4.6 Article

Semi-metallic, strong and stretchable wet-spun conjugated polymer microfibers

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 3, 期 11, 页码 2528-2538

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4tc02354d

关键词

-

资金

  1. King Abdullah University of Science and Technology (KAUST)
  2. SABIC Postdoctoral Fellowship
  3. NSF
  4. NIH/NIGMS via the NSF award [DMR-1332208]

向作者/读者索取更多资源

A dramatic improvement in electrical conductivity is necessary to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators. In this study, high-performance poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet-spinning followed by hot-drawing. Due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), we achieved a record electrical conductivity of 2804 S cm(-1). This is, to the best of our knowledge, a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S cm(-1)) and a two-fold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S cm(-1)). Moreover, we found that these highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young's modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers described here could make them available for conductive smart electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据