4.4 Article

CO2-emission reduction in China's residential building sector and contribution to the national climate change mitigation targets in 2020

出版社

SPRINGER
DOI: 10.1007/s11027-011-9343-5

关键词

Climate change mitigation measures; Building sector; China; 2020 targets; CO2-emission reduction; Econometric model

向作者/读者索取更多资源

Between 1980 and 2007, in the Chinese building sector in urban and rural areas, coal was mainly substituted with electricity and natural gas. Growing income will further increase energy consumption and CO2-emissions in the building sector. Using an econometric model, disaggregated energy demand and related CO2-emissions in the residential sector as well for the whole economy are estimated and forecasted until 2050. In 2009, the Chinese government pledged itself to reduce CO2-intensity by 40%-45% in 2020 compared to 2005. Aim of this article is to assess to which extent the measures in the building sector in China can contribute to this target. Main results of the analysis are: (a) The primary energy source coal was mainly substituted by electricity generated with coal. Apart from convenience gains, the environmental advantages are questionable. (b) Between 2010 and 2050, energy demand in the building sector will grow by 2.0%-4.1% per annum leading to CO2-emissions at least almost tripling from about 560 mill. tons in 2010 to about 1,500 mill. tons in 2050. (c) The energy efficiency gains in the building sector and other sectors of the Chinese economy, however, are not enough to fulfill the national CO2-intensity targets. The reduction of the CO2-intensity of GDP would be 37.2% in the BAU-scenario, and 31.9% in the LOW-scenario. Only in the HIGH-scenario (46.3%), the economy is growing efficient enough relative to the induced CO2-emissions. The remaining CO2-emission reductions could be gained by additional promotion of renewable energies (mainly solar and geo-thermal) in the building sector.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据