4.6 Article

A lipopolysaccharide binding heteromultivalent dendrimer nanoplatform for Gram negative cell targeting

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 3, 期 6, 页码 1149-1156

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4tb01690d

关键词

-

资金

  1. Michigan Nanotechnology Institute for Medicine and Biological Sciences
  2. University of Michigan Office of the Vice President for Research
  3. Shanghai Jiao Tong University

向作者/读者索取更多资源

We report on the practicality of a heteromultivalent design strategy for a nanoplatform that targets lipopolysaccharide molecules (LPS) present on the surface of Gram-negative bacteria. This design is based on the conjugation of a poly(amido amine) (PAMAM) dendrimer with two types of ligands, each having distinct affinities: (i) polymyxin B (PMB) as a primary high affinity ligand; (ii) a PMB-mimicking dendritic branch as an auxiliary low affinity ligand. Co-conjugation of these two ligands maximizes the efficiency of the primary ligand even when the primary ligand is present at a low valency on the nanoplatform (mean n(PMB) approximate to 1). By performing surface plasmon resonance studies using a LPS-immobilized cell wall model, we identified an ethanolamine (EA)-terminated branch as the auxiliary ligand that promotes binding avidity via heteromultivalent association. PMB conjugation of the dendrimer with excess EA branches led to LPS avidity two orders of magnitude greater than unconjugated PMB. Such tight binding observed by SPR corresponded well with adsorption to E. coli cells and with potent bactericidal activity in vitro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据