4.6 Article

Physically crosslinked polyvinyl alcohol and gelatin interpenetrating polymer network theta-gels for cartilage regeneration

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 3, 期 48, 页码 9242-9249

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5tb00989h

关键词

-

资金

  1. College of Engineering and Mathematical Sciences at the University of Vermont

向作者/读者索取更多资源

Theta-gels are hydrogels that form during the solidification and phase separation of two dislike polymers, in which a low molecular weight polymer behaves as a porogen and is removed through dialysis. For this study, interpenetrating polymer network (IPN) hydrogels were formed between polyvinyl alcohol (PVA) and gelatin using theta-gel fabrication techniques, i.e., in the presence of a porogen. The addition of gelatin to a PVA theta-gel, formed with a porogen, polyethylene glycol (PEG), created macro-porous hydrogels, and increased shear storage moduli and elastic moduli, compared to PVA-gelatin scaffold controls. A reduction in PVA crystallinity was verified by Fourier transform infrared (FTIR) spectroscopy in hydrogels fabricated using a porogen, i.e., PVA-PEG-gelatin, compared to PVA, PVA-PEG, or PVA-gelatin hydrogels alone. Van Geison staining confirmed the retention of gelatin after dialysis. A range of hydrogel moduli was achieved by optimizing PVA concentration, molecular weight, and gelatin concentration. PVA-gelatin hydrogels maintained primary human mesenchymal stem cell (MSC) viability. Soft (similar to 10 kPa) and stiff (similar to 100 kPa) PVA-gelatin hydrogels containing type II collagen significantly increased glycosaminoglycan (GAG) production compared to controls. PVA-gelatin hydrogels, formed using theta-gel techniques, warrant further investigation as articular cartilage tissue engineering scaffolds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据