4.8 Article

Discovery of energy transfer nanostructures using gelation-driven dynamic combinatorial libraries

期刊

CHEMICAL SCIENCE
卷 4, 期 9, 页码 3699-3705

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3sc51036k

关键词

-

资金

  1. US Air Force (AFOSR) [12448RK7359]

向作者/读者索取更多资源

Peptide self-assembly provides a useful approach to control the organization of functional molecular components, as relevant to future opto-electronic or photonic nanostructures. In this article, we report on the discovery of efficient energy transfer nanostructures using a dynamic combinatorial library (DCL) approach driven by molecular self-assembly, demonstrating an enhanced self-selection and amplification of effective energy transfer nanostructures from complex mixtures of dipeptide derivatives. By taking advantage of an enzyme-catalysed fully reversible amide formation reaction, we show how gelation shifts the equilibrium in favour of the formation of short aromatic dipeptide derivatives in the DCL system, as confirmed by reversed-phase high pressure liquid chromatography (HPLC), fluorescence emission spectroscopy, atomic force microscopy (AFM), transmission force microscopy (TEM) and circular dichroism (CD) spectroscopy. This approach enabled us to identify a two-component donor-acceptor hydrogel, which forms within minutes and exhibits efficient energy transfer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据