4.8 Article

Platinum(IV) prodrugs entrapped within multiwalled carbon nanotubes: Selective release by chemical reduction and hydrophobicity reversal

期刊

CHEMICAL SCIENCE
卷 3, 期 6, 页码 2083-2087

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2sc01086k

关键词

-

资金

  1. National University of Singapore [R143-000-411-133, R-148-000-129-112]

向作者/读者索取更多资源

Platinum-based anticancer drugs constitute some of most effective chemotherapeutic regimes, but they are limited by high toxicities and severe side-effects arising from premature aquation and non-specific interactions. Macromolecular delivery agents can be used to shield platinum drugs from adventitious binding and as a platform to attach targeting groups, as a strategy to mitigate some of these limitations. An approach was conceived to utilise carbon nanotubes as a protective shell for stable platinum(IV) prodrugs entrapped within its inner cavities. An inert and strongly hydrophobic platinum(IV) complex was designed for entrapment within multiwalled carbon nanotubes via hydrophobic-hydrophobic interactions. Upon chemical reduction, the drug was converted to its cytotoxic and hydrophilic form and released from the carrier, via a drastic reversal in hydrophobicity, for DNA-binding. This simple method of hydrophobic entrapment and controlled release by chemical reduction and hydrophobicity reversal, exploiting the Pt(IV) scaffold as a prodrug, could form the basis of other delivery strategies for targeted delivery of platinum drugs into cancer cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据