4.8 Article

Pair distribution function-derived mechanism of a single-crystal to disordered to single-crystal transformation in a hemilabile metal-organic framework

期刊

CHEMICAL SCIENCE
卷 3, 期 8, 页码 2559-2564

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2sc20261a

关键词

-

向作者/读者索取更多资源

Flexible metal-organic frameworks (MOFs) are materials of great current interest. A small class of MOFs show flexibility driven by reversible bonding rearrangements that lead directly to unusual properties. Cu-SIP-3 is a MOF based on the 5-sulfoisophthalate ligand, where the strong copper-carboxylate bonds ensure that the three-dimensional integrity of the structure is retained while allowing bonding changes to occur at the more weakly bonding sulfonate group leading to unusual properties such as the ultra-selective adsorption of only certain gases. While the integrity of the framework remains intact during bonding changes, crystalline order is not retained at all times during the transformations. X-Ray diffraction reveals that highly crystalline single crystals lose order during the transformation before regaining crystallinity once it is complete. Here we show how X-ray pair distribution function analysis can be used to reveal the mechanism of the transformations in Cu-SIP-3, identifying the sequence of atomic displacements that occur in the disordered phase. A similar approach reveals the underlying mechanism of Cu-SIP-3's ultra-selective gas adsorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据