4.8 Article

Multielectron redox chemistry of lanthanide Schiff-base complexes

期刊

CHEMICAL SCIENCE
卷 3, 期 8, 页码 2433-2448

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2sc20476b

关键词

-

资金

  1. CEA, DSM Energy program

向作者/读者索取更多资源

Multielectron redox chemistry, which is essential in metal catalysed chemical transformations, is not easily accessible in lanthanide complexes. Here we explored the reductive chemistry of lanthanide complexes with tetradentate Schiff bases acting as redox-active ligands with the objective of identifying new pathways to lanthanide multielectron redox transfer. The chemical reduction with alkali metals of heteroleptic [Nd(salophen)X] (salophen = N,N'-bis(salicylidene) phenylenediamine, X = I, OTf) and of a series of homoleptic K[Ln((R)salophen)(2)] complexes of trivalent lanthanides has resulted respectively in the synthesis of the new dinuclear Nd(III) complex K-2[Nd-2(cyclo-salophen)(THF)(2)] and in the synthesis of a series of mononuclear lanthanide(III) complexes of general formula K-3[Ln(bis-(R)salophen)] (R = H, Me, tBu). Ligand reduction and C-C bond formation are supported by X-ray crystal structures. Proton NMR studies demonstrate that the K-2[Nd-2(cyclo-salophen)(py)(2)] complex can transfer four electrons in the reaction with oxidizing agents such as AgOTf through the breaking of the two C C bonds. Moreover the electrochemistry and reactivity of the mononuclear complexes K-3[Ln(bis-(R)salophen)] show that they can act as formal two electron reductants and that their oxidation potential can be tuned by changing the substituents on the ligand. These results illustrate that Schiff bases provide a new way to introduce multielectron redox events at lanthanide centers and a new route to highly reactive mono- and polynuclear complexes of lanthanides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据