4.8 Article

Chemical control of interstitial iron leading to superconductivity in Fe1+xTe0.7Se0.3

期刊

CHEMICAL SCIENCE
卷 2, 期 9, 页码 1782-1787

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1sc00114k

关键词

-

向作者/读者索取更多资源

Although it possesses the simple layered topology of the tetragonal anti-PO structure, the Fe(Te,Se) series has a complex structural and magnetic phase diagram that is dependent on composition and occupancy of a secondary interstitial Fe site. Here we show that superconductivity in Fe1+xTe0.7Se0.3 is enhanced by topotactic deintercalation of the interstitial iron with iodine, demonstrating the competing roles of the two iron positions. We follow the evolution of the structure and magnetic properties as a function of interstitial iron. Powder neutron diffraction reveals a flattening of the Fe(Te,Se)(4) tetrahedron on Fe removal and an unusual temperature dependence of the lattice parameters that increases strongly below 150 K along with lattice strain. Inelastic neutron scattering shows gapless paramagnetic scattering evolves into a gapped excitation at 6 meV on removal of interstitial iron. This work highlights the robustness of the superconductivity across different Fe(Te,Se) compositions and geometries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据