4.6 Article

Formulation of robust organic-inorganic hybrid magnetic microcapsules through hard-template mediated method for efficient enzyme immobilization

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 3, 期 14, 页码 2883-2891

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4tb02102a

关键词

-

资金

  1. National Natural Science Foundation of China [21374045]
  2. scientific research ability training of under-graduate students majoring in chemistry by the two patters based on the tutorial system and top students [J1103307]
  3. Opening Foundation of State Key Laboratory of Applied Organic Chemistry [SKLAOC-2009-35]

向作者/读者索取更多资源

A mild and facile method for the construction of robust organic-inorganic hybrid magnetic microcapsules was developed by a hard-template mediated method combined with polydopamine (PDA) and Fe3O4 nanoparticles onto a CaCO3 microparticle template. More specifically, negatively charged Fe3O4 nanoparticles were adsorbed on the surface or into the lumen of porous CaCO3 microparticles through electrostatic interaction and physical absorption. Then, the magnetic sacrificial templates were coated with PDA through the self-polymerization of dopamine to obtain the magnetic PDA-CaCO3 microparticles, which was followed by template removal using EDTA to construct organic-inorganic hybrid magnetic microcapsules. Characterization confirmed that the microcapsules possess a robust hollow structure such that the enzyme inside exists in a free state. The Fe3O4 nanoparticles acted as critical factors in the microcapsules for both recyclable component and tough scaffolds to sustain the microcapsules away from collapsing and folding. Combing the merits of the organic layer and the inorganic component, the microcapsules were applied for the encapsulation of Candida Rugosa Lipase (CRL). The encapsulated CRL was demonstrated to have several advantages, including increased encapsulation efficiency, enzyme activity and long-term storage stability. Hopefully, the as-prepared microbioreactor may provide a facile and generic approach for other biochemical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据