4.6 Article

Porous and strong three-dimensional carbon nanotube coated ceramic scaffolds for tissue engineering

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 3, 期 42, 页码 8337-8347

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5tb01052g

关键词

-

资金

  1. Australian National Health and Medical Research Council
  2. Rebecca Copper Foundation
  3. Australian Research Council

向作者/读者索取更多资源

Biomaterials research is investigating increasingly complex materials capable of mirroring the highly organized biochemical and architectural environments of the body. Accordingly, tissue scaffolds with nanoscale properties that mirror the fibrous proteins present in tissue are being developed. Such materials can benefit from the inherent dimensional similarities and nanocomposite nature of the cellular environment, altering nanoscale dimensional and biochemical properties to mimic the regulatory characteristics of natural cellular environments. One nanomaterial which demonstrates potential across a diverse range of biomaterial applications is carbon nanotubes (CNTs). Building on previous reports, a method to coat CNTs throughout 3D porous structures is developed. Through modifications to typical chemical vapour deposition (CVD), a high-quality uniform coating of carbon nanotubes (CNTs) is demonstrated over beta-tricalcium phosphate/hydroxyapatite (or TCP/HA), which is in clinical use; and the high-mechanical-strength multicomponent ceramic Ca2ZnSi2O7-ZnAl2O4, (or Sr-HT-Gah). The resulting materials address deficiencies of previously reported CNT biomaterials by simultaneously presenting properties of high porosity, biocompatibility and a mechanical stability. Together, this unique combination of properties makes these scaffolds versatile materials for tissue engineering in load bearing applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据