4.6 Article

Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 3, 期 35, 页码 18154-18162

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta04721h

关键词

-

资金

  1. national Natural Science Foundation of China [21406056]

向作者/读者索取更多资源

Corn husk, a renewable biomass, has been successfully explored as a low-cost crude carbon source to prepare advanced higher-value 3D HPCs by means of KOH pre-treatment and direct pyrolysis, the synthesis route is simple, self-templating and easy to scale-up for industrialization. The CHHPCs present many advantages for supercapacitor applications, including higher surface area (928 m(2) g(-1)), hierarchical porosity consisting of macro, meso, and micropores, a turbostratic carbon structure, uniform pore size, 3D architecture and rich O-doping (17.1 wt%). The supercapacitor performance of CHHPCs was evaluated in a 6 M KOH electrolyte and 1 M Na2SO4 electrolyte. The CHHPCs exhibit a high specific capacitance of 356 F g(-1) and 300 F g(-1) at 1 A g(-1), 20 A g(-1), respectively, ultra-high rate capability with 88% retention rate from 1 to 10 A g(-1) and outstanding cycling stability with 95% capacitance retention after 2500 cycles. The CHHPCs symmetric supercapacitor display a high energy density of 21 W h kg(-1) at a power density of 875 W kg(-1) and retains as high as 11 W h kg(-1) at 5600 W kg(-1) in 1 M Na2SO4 electrolyte. The facile, efficient and template-free synthesis strategy for novel 3D-HPCs from biomass sources may promote commercial application of 3D-HPCs in the fields of supercapacitors, lithium ion batteries, fuel cells and sorbents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据