4.6 Article

High performance composite polymer electrolytes using polymeric ionic liquid-functionalized graphene molecular brushes

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 3, 期 35, 页码 18064-18073

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta02940f

关键词

-

资金

  1. National Natural Science Foundation of China [51210004, 51433002]

向作者/读者索取更多资源

A new structural design and tailored morphology of polymer-functionalized graphene (polymer-FG) are employed to optimize composite polymer electrolytes (CPEs). The ionic transfer conditions including Li salt dissociation, amorphous content and segmental mobility are significantly improved by incorporating polymer-FG, especially that having a polymeric ionic liquid (PIL) and a polymer brush structure [PIL(TFSI)-FG(brush)]. Electrical shorts are eliminated due to the presence of the functionalized polymer on reduced graphene oxide (RGO) and a minimal amount of polymer-FG in the PEO/Li+ polymer electrolytes (PEs). Polymer-FG with PIL brushes increases significantly the Li ion conductivity of PEO/Li+ PE by >2 orders of magnitude and similar to 20-fold at 30 degrees C and 60 degrees C with high Li salt loading (O/Li = 8/1), respectively. Furthermore, significant improvements in mechanical properties are observed where only 0.6 wt% addition of the PIL(TFSI)-FG(brush) led to more than 300% increase in the tensile strength of the PEO/Li+ at an O/Li ratio of 16/1. Li-ion battery performance was evaluated with the CPE containing 0.6 wt% of PIL(TFSI)-FG(brush), resulting in superior capacity and cycle performance compared to those of the PEO/Li+ PE. Thus, we believe, embedding minimal amounts of structurally and morphologically optimized polymer-FG nano-fillers can lead to the development of a new class of SPEs with high ionic conductivity for high performance all-solid-state Li-ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据