4.5 Article

Amplitude Noise and Timing Jitter Characterization of a High-Power Mode-Locked Integrated External-Cavity Surface Emitting Laser

期刊

IEEE PHOTONICS JOURNAL
卷 6, 期 1, 页码 -

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JPHOT.2013.2295464

关键词

Diode-pumped lasers; infrared lasers; mode-locked lasers; semiconductor lasers; ultrafast lasers

资金

  1. technology and cleanroom facility FIRST of ETH Zurich for advanced micro- and nanotechnology

向作者/读者索取更多资源

We present a timing jitter and amplitude noise characterization of a high-power mode-locked integrated external-cavity surface emitting laser (MIXSEL). In the MIXSEL, the semiconductor saturable absorber of a SESAM is integrated into the structure of a VECSEL to start and stabilize passive mode-locking. In comparison to previous noise characterization of SESAM-mode-locked VECSELs, this first noise characterization of a MIXSEL is performed at a much higher average output power. In a free-running operation, the laser generates 14.3-ps pulses at an average output power of 645 mW at a 2-GHz pulse repetition rate and an RMS amplitude noise of < 0.15% [1 Hz, 10 MHz]. We measured an RMS timing jitter of 129 fs [100 Hz, 10 MHz], which represents the lowest value for a free-running passively mode-locked semiconductor disk laser to date. Additionally, we stabilized the pulse repetition rate with a piezo actuator to control the cavity length. With the laser generating 16.7-ps pulses at an average output power of 701 mW, the repetition frequency was phase-locked to a low-noise electronic reference using a feedback loop. In actively stabilized operation, the RMS timing jitter was reduced to less than 70 fs [1 Hz, 100 MHz]. In the 100-Hz to 10-MHz bandwidth, we report the lowest timing jitter measured from a passively mode-locked semiconductor disk laser to date with a value of 31 fs. These results show that the MIXSEL technology provides compact ultrafast laser sources combining high-power and low-noise performance similar to diode-pumped solid-state lasers, which enable world-record optical communication rates and low-noise frequency combs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据