4.5 Article

Kinematic and dynamic gait compensations resulting from knee instability in a rat model of osteoarthritis

期刊

ARTHRITIS RESEARCH & THERAPY
卷 14, 期 2, 页码 -

出版社

BMC
DOI: 10.1186/ar3801

关键词

-

资金

  1. National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
  2. NIAMS/NIH [K99AR057426, R00AR057426, P01AR050245, R01AR047442]
  3. North Carolina Biotechnology Center [CFG-1013]

向作者/读者索取更多资源

Introduction: Osteoarthritis (OA) results in pain and disability; however, preclinical OA models often focus on joint-level changes. Gait analysis is one method used to evaluate both preclinical OA models and OA patients. The objective of this study is to describe spatiotemporal and ground reaction force changes in a rat medial meniscus transection (MMT) model of knee OA and to compare these gait measures with assays of weight bearing and tactile allodynia. Methods: Sixteen rats were used in the study. The medial collateral ligament (MCL) was transected in twelve Lewis rats (male, 200 to 250 g); in six rats, the medial meniscus was transected, and the remaining six rats served as sham controls. The remaining four rats served as naive controls. Gait, weight-bearing as measured by an incapacitance meter, and tactile allodynia were assessed on postoperative days 9 to 24. On day 28, knee joints were collected for histology. Cytokine concentrations in the serum were assessed with a 10-plex cytokine panel. Results: Weight bearing was not affected by sham or MMT surgery; however, the MMT group had decreased mechanical paw-withdrawal thresholds in the operated limb relative to the contralateral limb (P = 0.017). The gait of the MMT group became increasingly asymmetric from postoperative days 9 to 24 (P = 0.020); moreover, MMT animals tended to spend more time on their contralateral limb than their operated limb while walking (P < 0.1). Ground reaction forces confirmed temporal shifts in symmetry and stance time, as the MMT group had lower vertical and propulsive ground reaction forces in their operated limb relative to the contralateral limb, naive, and sham controls (P < 0.05). Levels of interleukin 6 in the MMT group tended to be higher than naive controls (P = 0.072). Histology confirmed increased cartilage damage in the MMT group, consistent with OA initiation. Post hoc analysis revealed that gait symmetry, stance time imbalance, peak propulsive force, and serum interleukin 6 concentrations had significant correlations to the severity of cartilage lesion formation. Conclusion: These data indicate significant gait compensations were present in the MMT group relative to medial collateral ligament (MCL) injury (sham) alone and naive controls. Moreover, these data suggest that gait compensations are likely driven by meniscal instability and/or cartilage damage, and not by MCL injury alone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据