4.6 Article

A monolithic and standalone solar-fuel device having comparable efficiency to photosynthesis in nature

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 3, 期 11, 页码 5835-5842

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta06495j

关键词

-

资金

  1. Korea Institute of Science and Technology (KIST)
  2. University-Institute cooperation program of the National Research Foundation of Korea - Ministry of Science, ICT and Future Planning

向作者/读者索取更多资源

The need for developing sustainable energy sources has generated academic and industrial attention in artificial photosynthesis, inspired by the natural process. In this study, we demonstrate a highly efficient solar energy to fuel conversion device using CO2 and water as feedstock. We developed a thin film photovoltaic technology for the light absorbing component using a low cost, solution based Cu(InxGa1-x)(SySe1-y)(2) (CIGS) module fabrication method to provide sufficient potential for the conversion reactions. Our solar-fuel device uses cobalt oxide (Co3O4) nanoparticle thin film deposited with a low temperature coating method as the water oxidation catalyst and nanostructured gold film as the CO2 reduction to CO generation catalyst. We demonstrated that the integrated monolithic device operated by energy only from sunlight, in an absence of any external energy input. The individual components showed the following abilities: solar-to-power conversion efficiency of 8.58% for the CIGS photovoltaic module photoelectrode, overpotential reduction of water oxidation with the Co3O4 catalyst film by similar to 360 mV at 5 mA cm(-2), and Faradaic efficiency of over 90% by the nanostructured Au catalyst for CO2 reduction to CO. Remarkably, this is the first demonstration of a monolithic and standalone solar-fuel device whose solar-to-fuel conversion efficiency from CO2 and H2O is 4.23%, which is comparable with that of photosynthesis in nature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据