4.6 Article

A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li-S batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 3, 期 32, 页码 16670-16678

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta04255k

关键词

-

资金

  1. ARC Discovery Grants from Australian Research Council
  2. NSFC-RGC Joint Research Scheme [51361165201]
  3. NSFC [51125001, 51172005]

向作者/读者索取更多资源

Conductive confinement of sulfur and polysulfides via carbonaceous blocking layers can simultaneously address the issues of low conductivity, volume expansion of sulfur during the charge/discharge process and the polysulfide shuttling effect in lithium-sulfur (Li-S) batteries. Herein, a conductive and porous nitrogen and phosphorus dual doped graphene (p-NP-G) blocking layer is prepared via a thermal annealing and subsequent hydrothermal reaction route. The doping levels of N and P in p-NP-G as measured by X-ray photoelectron spectroscopy are ca. 4.38% and ca. 1.93%, respectively. The dual doped blocking layer exhibits higher conductivity than N or P single doped blocking layers. More importantly, density functional theory (DFT) calculations demonstrate that P atoms and -P-O groups in the p-NP-G layer offer stronger adsorption of polysulfides than the N species. The electrochemical evaluation results illustrate that the p-NP-G blocking layer can deliver superior initial capacity (1158.3 mA h g(-1) at a current density of 1C), excellent rate capability (633.7 mA h g-1 at 2C), and satisfactory cycling stability (ca. 0.09% capacity decay per cycle), which are better than those of the N or P single doped graphene. This work suggests that this synergetic combination of conductive and adsorptive confinement strategies induced by the multi-heteroatom doping scheme is a promising approach for developing high performance Li-S batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据