4.6 Article

Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 3, 期 6, 页码 2844-2852

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta05862c

关键词

-

资金

  1. KAUST CRG2

向作者/读者索取更多资源

The preparation of biomimetic superhydrophobic surfaces with hydrophilic micro-sized patterns is highly desirable, but a one-step, mask-free method to produce such surfaces has not previously been reported. We have developed a direct method to produce superhydrophilic micropatterns on superhydrophobic surfaces based on inkjet printing technology. This work was inspired by the efficient fog-harvesting behavior of Stenocara beetles in the Namib Desert. A mussel-inspired ink consisting of an optimized solution of dopamine was applied directly by inkjet printing to superhydrophobic surfaces. Stable Wenzel's microdroplets of the dopamine solution with well-defined micropatterns were obtained on these surfaces. Superhydrophilic micropatterns with well-controlled dimensions were then readily achieved on the superhydrophobic surfaces by the formation of polydopamine via in situ polymerization. The micropatterned superhydrophobic surfaces prepared by this inkjet printing method showed enhanced water collection efficiency compared with uniform superhydrophilic and superhydrophobic surfaces. This method can be used for the facile large-scale patterning of superhydrophobic surfaces with high precision and superior pattern stability and is therefore a key step toward patterning superhydrophobic surfaces for practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据