4.7 Article

Subduction along and within the Baltoscandian margin during closing of the Iapetus Ocean and Baltica-Laurentia collision

期刊

LITHOSPHERE
卷 5, 期 2, 页码 169-178

出版社

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/L220.1

关键词

-

资金

  1. Swedish Research Council [2010-3855]
  2. Slovak Research and Development Agency [APVV-0080-11]
  3. Slovak Scientific Grant Agency VEGA [2/0013/12]

向作者/读者索取更多资源

The recent discovery of ultrahigh-pressure (UHP) mineral parageneses in the far-transported (greater than 400 km) Seve Nappe Complex of the Swedish Caledonides sheds new light on the subduction system that dominated the contracting Baltoscandian margin of continental Baltica during the Ordovician and culminated in collision with Laurentia in the Silurian to Early Devonian. High-grade metamorphism of this Neoproterozoic to Cambrian rifted, extended, dike-intruded outer-margin assemblage started in the Early Ordovician and may have continued, perhaps episodically, until collision of the continents at the end of this period. The recent discovery of UHP kyanite eclogite in northern Jamtland (west-central Sweden) yields evidence of metamorphism at depths of 100 km. Although UHP rocks are only locally preserved from retrogression during the long-distance transport onto the Baltoscandian platform, these high-pressure parageneses indicate that deep subduction played an important role in the tectonothermal history of the complex. Based on existing isotopic age data, this UHP metamorphism occurred in the Late Ordovician, shortly before, or during, the initial collision between the continents (Scandian orogeny). In some central parts of the complex, migmatization and hot extrusion occurred in the Early Silurian, giving way to thrust emplacement across the Baltoscandian foreland basin and platform that continued into the Early Devonian. Identification of HP/UHP metamorphism at different levels within the Scandian allochthons, definition of their pressure-temperature-time paths, and recognition of their vast transport distances are essential for an understanding of the deeper structural levels of the orogen in the hinterland (e.g., the Western Gneiss Region), where the attenuated units were reworked together during the Early Devonian.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据