4.5 Article

Fast prototyping of a SoC-based smart-camera: a real-time fall detection case study

期刊

JOURNAL OF REAL-TIME IMAGE PROCESSING
卷 12, 期 4, 页码 649-662

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11554-014-0456-4

关键词

Real-time fall detection; SoC implementation; Fast smart camera prototyping; Zynq; HW/SW implementation; Boosting hardware implementation

向作者/读者索取更多资源

Smart camera, i.e. cameras that are able to acquire and process images in real-time, is a typical example of the new embedded computer vision systems. A key example of application is automatic fall detection, which can be useful for helping elderly people in daily life. In this paper, we propose a methodology for development and fast-prototyping of a fall detection system based on such a smart camera, which allows to reduce the development time compared to standard approaches. Founded on a supervised classification approach, we propose a HW/SW implementation to detect falls in a home environment using a single camera and an optimized descriptor adapted to real-time tasks. This heterogeneous implementation is based on Xilinx's system-on-chip named Zynq. The main contributions of this work are (i) the proposal of a co-design methodology. These methodologies enable the HW/SW partitioning to be delayed using high-level algorithmic description and high-level synthesis tools. Our approach enables fast prototyping which allows fast architecture exploration and optimisation to be performed, (ii) the design of a hardware accelerator dedicated to boosting-based classification, which is a very popular and efficient algorithm used in image analysis, (iii) the proposal of fall-detection embedded in a smart camera and enabling integration into the elderly people environment. Performances of our system are finally compared to the state-of-the-art.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据