4.7 Article

A three-dimensional cell-laden microfluidic chip for in vitro drug metabolism detection

期刊

BIOFABRICATION
卷 6, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1758-5082/6/2/025008

关键词

drug metabolism; microfluidic; tissue-on-a-chip; cell-laden chip

资金

  1. National Science Foundation [1209517, NSF-CMMI-1030520]
  2. Office Of Internatl Science &Engineering
  3. Office Of The Director [1209517] Funding Source: National Science Foundation

向作者/读者索取更多资源

Three-dimensional tissue platforms are rapidly becoming the method of choice for quantification of the heterogeneity of cell populations for many diagnostic and drug therapy applications. Microfluidic sensors and the integration of sensors with microfluidic systems are often described as miniature versions of their macro-scale counterparts. This technology presents unique advantages for handling costly and difficult-to-obtain samples and reagents as a typical system requires between 100 nL to 10 mu L of working fluid. The fabrication of a fully functional cell-based biosensor utilizes both biological patterning and microfabrication techniques. A digital micro-mirror (photolithographic) system is initiated to construct the tissue platform while a cell printer is used to precisely embed the cells within the construct. Tissue construct developed with these technologies will provide an early diagnostic of a drug's potential use. A three-dimensional interconnected microfluidic environment has the potential to eliminate the limitations of the traditional mainstays of two-dimensional investigations. This paper illustrates an economical and an innovative approach of fabricating a three-dimensional cell-laden microfluidic chip for detecting drug metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据