4.7 Article

Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft

期刊

BIOFABRICATION
卷 2, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1758-5082/2/1/014102

关键词

-

向作者/读者索取更多资源

Tissue engineering of blood vessels is a promising strategy in regenerative medicine with a broad spectrum of potential applications. However, many hurdles for tissue-engineered vascular grafts, such as poor mechanical properties, thrombogenicity and cell over-growth inside the construct, need to be overcome prior to the clinical application. To surmount these shortcomings, we developed a poly-L-lactide (PLLA)/poly-epsilon-caprolactone (PCL) scaffold releasing heparin by a combination of electrospinning and fused deposition modeling technique. PLLA/heparin scaffolds were produced by electrospinning in tubular shape and then fused deposition modeling was used to armor the tube with a single coil of PCL on the outer layer to improve mechanical properties. Scaffolds were then seeded with human mesenchymal stem cells (hMSCs) and assayed in terms of morphology, mechanical tensile strength, cell viability and differentiation. This particular scaffold design allowed the generation of both a drug delivery system amenable to surmount thrombogenic issues and a microenvironment able to induce endothelial differentiation. At the same time, the PCL external coiling improved mechanical resistance of the microfibrous scaffold. By the combination of two notable techniques in biofabrication-electrospinning and FDM-and exploiting the biological effects of heparin, we developed an ad hoc differentiating device for hMSCs seeding, able to induce differentiation into vascular endothelium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据