4.7 Article

Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering

期刊

BIOFABRICATION
卷 1, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1758-5082/1/1/015003

关键词

-

资金

  1. NSF [NSF ITR 0427216]

向作者/读者索取更多资源

Bone tissue engineering is an emerging field providing viable substitutes for bone regeneration. Recent advances have allowed scientists and engineers to develop scaffolds for guided bone growth. However, success requires scaffolds to have specific macroscopic geometries and internal architectures conducive to biological and biophysical functions. Freeform fabrication provides an effective process tool to manufacture three-dimensional porous scaffolds with complex shapes and designed properties. A novel precision extruding deposition (PED) technique was developed to fabricate polycaprolactone (PCL) scaffolds. It was possible to manufacture scaffolds with a controlled pore size of 350 mu m with designed structural orientations using this method. The scaffold morphology, internal micro-architecture and mechanical properties were evaluated using scanning electron microscopy (SEM), micro-computed tomography (micro-CT) and mechanical testing, respectively. An in vitro cell-scaffold interaction study was carried out using primary fetal bovine osteoblasts. Specifically, the cell proliferation and differentiation was evaluated by Alamar Blue assay for cell metabolic activity, alkaline phosphatase activity and osteoblast production of calcium. An in vivo study was performed on nude mice to determine the capability of osteoblast-seeded PCL to induce osteogenesis. Each scaffold was implanted subcutaneously in nude mice and, following sacrifice, was explanted at one of a series of time intervals. The explants were then evaluated histologically for possible areas of osseointegration. Microscopy and radiological examination showed multiple areas of osseous ingrowth suggesting that the osteoblast-seeded PCL scaffolds evoke osteogenesis in vivo. These studies demonstrated the viability of the PED process to fabricate PCL scaffolds having the necessary mechanical properties, structural integrity, and controlled pore size and interconnectivity desired for bone tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据