4.3 Article

Virus Genome Quantification Does not Predict Norovirus Infectivity After Application of Food Inactivation Processing Technologies

期刊

FOOD AND ENVIRONMENTAL VIROLOGY
卷 3, 期 3-4, 页码 141-146

出版社

SPRINGER
DOI: 10.1007/s12560-011-9070-9

关键词

Viral infectivity; Inactivation technologies; Enzymatic treatment; RT real-time PCR; Norovirus

资金

  1. Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Spanish Ministry of Science and Innovation [INIA RTA 11-79]
  2. Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA) (Spain)
  3. FEMS Research Fellowship [2009-2]
  4. University of Leon (Spain) [929 (COST-STSM-929-05122)]

向作者/读者索取更多资源

When determining the effect of food processing on the infectivity of any contaminating virus, it is necessary to distinguish unambiguously between infectious and non-infectious viruses present. However, this can be difficult in the particular case of noroviruses (NoVs) because no reliable cell culture model is available. The aim of this study was to assess the use of molecular methods-RT real-time PCR (RT-qPCR) and enzymatic treatment (ET) coupled to RT-qPCR-to quantify the infectivity of NoV after application of various inactivating food-processing technologies. RT-qPCR and ET-RT-qPCR gave significantly different (P < 0.01) results concerning the reduction in viral genome counts by all inactivation procedures and conditions used, except for HHP treatment at 600 MPa for 5 min. These findings indicate that the ET prior to RT-qPCR has an effect on the estimation of the reduction of virus genome counts, and may eliminate genomes of affected virus particles. However, no correlation was found between the results obtained by ET-RT-qPCR and those obtained by cell culture. Therefore, the effect is presumably only partial, and not adequate to allow accurate estimation of virus inactivation. Consequently, our results indicate that the quantification of virus genomes by PCR, regardless of prior ET, is not adequate for establishing virus inactivation and/or infectivity. In addition, our results also illustrate that the general effect of virus inactivation is not directly correlated to effects on the integrity of virus genome and protein capsid. Presumably, inactivation by food processing is the consequence of effects on proteins involved in adhesion and invasion stages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据