4.6 Article

Fe3C-based oxygen reduction catalysts: synthesis, hollow spherical structures and applications in fuel cells

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 3, 期 4, 页码 1752-1760

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ta03986f

关键词

-

资金

  1. Danish ForskEL (Catbooster)
  2. Danish Council for Strategic Research (4M Centre)
  3. National Basic Research Program of China (973 Program) [2012CB215500]
  4. National High Technology Research and Development Program of China (863 Program) [2012AA053401]

向作者/读者索取更多资源

We present a detailed study of a novel Fe3C-based spherical catalyst with respect to synthetic parameters, nanostructure formation, ORR active sites and fuel cell demonstration. The catalyst is synthesized by high-temperature autoclave pyrolysis using decomposing precursors. Below 500 degrees C, melamine-rich microspheres are first developed with uniformly dispersed amorphous Fe species. During the following pyrolysis at temperatures from 600 to 660 degrees C, a small amount of Fe3C phase with possible Fe-N-x/C active sites are formed, however, with moderate catalytic activity, likely limited by the low conductivity of the catalyst. At high pyrolytic temperatures of 700-800 degrees C, simultaneous formation of Fe3C nanoparticles and encasing graphitic layers occur within the morphological confinement of the microspheres. With negligible surface nitrogen or iron functionality, the thus-obtained catalysts exhibit superior ORR activity and stability. A new ORR active phase of Fe3C nanoparticles encapsulated by thin graphitic layers is proposed. The activity and durability of the catalysts are demonstrated in both Nafion-based low temperature and acid doped polybenzimidazole-based high temperature proton exchange membrane fuel cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据