4.4 Article

Horava-Lifshitz gravity from dynamical Newton-Cartan geometry

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 7, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP07(2015)155

关键词

Classical Theories of Gravity; Space-Time Symmetries; Models of Quantum Gravity

资金

  1. advanced ERC grant 'Symmetries and Dualities in Gravity and M-theory' of Marc Henneaux
  2. Danish National Research Foundation project New horizons in particle and condensed matter physics from black holes
  3. INFN

向作者/读者索取更多资源

Recently it has been established that torsional Newton-Cartan (TNC) geometry is the appropriate geometrical framework to which non-relativistic field theories couple. We show that when these geometries are made dynamical they give rise to Horava-Lifshitz (HL) gravity. Projectable HL gravity corresponds to dynamical Newton-Cartan (NC) geometry without torsion and non-projectable HL gravity corresponds to dynamical NC geometry with twistless torsion (hypersurface orthogonal foliation). We build a precise dictionary relating all fields (including the scalar khronon), their transformations and other properties in both HL gravity and dynamical TNC geometry. We use TNC invariance to construct the effective action for dynamical twistless torsional Newton-Cartan geometries in 2+1 dimensions for dynamical exponent 1 < z <= 2 and demonstrate that this exactly agrees with the most general forms of the HL actions constructed in the literature. Further, we identify the origin of the U(1) symmetry observed by Horava and Melby-Thompson as coming from the Bargmann extension of the local Galilean algebra that acts on the tangent space to TNC geometries. We argue that TNC geometry, which is manifestly diffeomorphism covariant, is a natural geometrical framework underlying HL gravity and discuss some of its implications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据