4.2 Article

Ready, Set and no Action: A Static Perspective on Potential Energy Surfaces commonly used in Gas-Surface Dynamics

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1524/zpch.2013.0410

关键词

PES; Gas-Surface Dynamics; Dissociative Sticking Probability; Corrugation-Reducing Procedure; Neural Networks; Global Minima Search

向作者/读者索取更多资源

In honoring the seminal contribution of Henry Eyring and Michael Polanyi who first introduced the concept of potential energy surfaces (PESs) to describe chemical reactions in gas-phase [Z. Phys. Chem. 12, 279-311, (1931)], this work comes to review and assess state-of-the-art approaches towards first-principle based modeling in the field of gas-surface dynamics. Within the Born-Oppenheimer and frozen surface approximations, the O-2-Ag(100) interaction energetics are used as a showcase system to accentuate the complex landscape exhibited by the PESs employed to describe the impingement of diatomics on metal substrates and draw attention to the far-from-trivial task of continuously representing them within all six molecular degrees of freedom. To this end, the same set of ab initio reference data obtained within Density Functional Theory (DFT) are continuously represented by two different state-of-the-art high-dimensional approaches, namely the Corrugation-Reducing Procedure and Neural Networks. Exploiting the numerically undemanding nature of the resulting representations, a detailed static evaluation is performed on both PESs based on an extensive global minima search. The latter proved particularly illuminating in revealing representation deficiencies which affect the dynamical picture yet go otherwise unnoticed within the so-called divide-and-conquer approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据