4.6 Article

Core@shell sulfur@polypyrrole nanoparticles sandwiched in graphene sheets as cathode for lithium-sulfur batteries

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 24, 期 4, 页码 448-455

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jechem.2015.06.011

关键词

Nano sulfur; Conductive polymer; Core@shell structure; Graphene coating; Lithium-sulfur battery

向作者/读者索取更多资源

A nano sulfur-based composite cathode material featured by uniform core@shell-structured sulfur@polypyrrole nanoparticles sandwiched in three-dimensional graphene sheets conductive network (S@PPy/GS) is fabricated via a facile solution-based method. The S@PPy nanoparticles are synthesized by in situ chemical oxidative polymerization of pyrrole on the surface of sulfur particles, and then graphene sheets are covered outside the S@PPy nanoparticles, forming a three-dimensional conductive network. When evaluating the electrochemical performance of S@PPy/GS in a lithium-sulfur battery, it delivers large discharge capacity, excellent cycle stability, and good rate capability. The initial discharge capacity is up to 1040 mAh/g at 0.1 C, the capacity can remain 537.8 mAh/g at 0.2 C after 200 cycles, even at a higher rate of 1 C, the specific capacity still reaches 566.5 mAh/g. The good electrochemical performance is attributed to the unique structure of S@PPy/GS, which can not only provide an excellent transport of lithium and electron ions within the electrodes, but also retard the shuttle effect of soluble lithium polysulfides effectively, thus plays a positive role in building better lithium-sulfur batteries. (C) 2015 Science Press and Dalian Institute of Chemical Physics. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据