4.5 Article

A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/zamm.201300028

关键词

Lattice models; microstructure; perturbation analysis; damage parameter; statistical damage mechanics; localization; multiscale models; tensile strength; discrete models; elastic model; mean field

资金

  1. Italian Ministry of Research and Education [FIRB RBFR10VB42_ 003]

向作者/读者索取更多资源

Lattice models are powerful tools to investigate damage processes in quasi-brittle material by a microscale perspective. Starting from prior work on a novel rational damage theory for a 2D heterogenous lattice, this paper explores the connection between the series of critical strains at which the microcracks form (i.e. lattice links fail) and the second gradient of the microscale displacement field. Taking a simple tensile test as a representative case study for this endeavour, the analysis of accurate numerical results provides evidence that the second gradient of the microscale displacement field (notably the quantity | delta ( u(x)/ x)| for the specific example elaborated here) conveys indeed crucial information about the microcracks formation process and can be conveniently used to introduce simplifications of the rational theory that are of relevance by practical purposes as full field strain measurements become routinely possible with digital imaging correlation techniques. Note worthy, the results support the new view that the damage evolution is a three regimes process (I dilute damage, II homogeneous interaction, III localization.) The featured connection with the second gradient of the microscale displacement field is applicable in regions II-III, where microcracks interactions grow stronger and the lattice transitions to the softening regime. The potential impact of these findings towards the formulation of new and physically based CDM models, which are consistent with the reference discrete microscale theory, cannot be overlooked and is pointed out.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据