4.5 Article

Energetic effects during phase transition under freezing-thawing load in porous media - a continuum multiphase description and FE-simulation

期刊

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/zamm.201200154

关键词

Theory of porous media; ice formation; phase transition; water-ice pressure; heat of fusion

资金

  1. German Research Society (DFG) [BI 417/6-1, BI 417/6-2]

向作者/读者索取更多资源

In civil engineering, the frost durability of partly liquid saturated porous media under freezing and thawing conditions is a point of great discussion. Ice formation in porous media results from coupled heat and mass transport and is accompanied by ice expansion. The volume increase in space and time corresponds to the moving freezing front inside the porous solid. In this paper, a macroscopic model based on the Theory of Porous Media (TPM) is presented which describes energetic effects of freezing and thawing processes. For simplification a ternary model consisting of the phases solid, ice and liquid is used. Attention is paid to the description of the temperature development, the determination of energy, enthalpy and mass supply as well as volume deformations due to ice formation during a freezing and thawing cycle. For the detection of energetic effects regarding the characterization and control of phase transition of water and ice, a physically motivated evolution equation for the mass exchange between ice and liquid is presented. Comparing experimental data with numerical examples shows that the simplified model is indeed capable of simulating the temperature development and energetic effects during phase change. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据