4.2 Article

Ploidy changes and genome stability in yeast

期刊

YEAST
卷 31, 期 11, 页码 421-430

出版社

WILEY
DOI: 10.1002/yea.3037

关键词

aneuploidy; Candida albicans; chromosome instability (CIN); evolution; genome stability; Saccharomyces cerevisiae; Schizosaccharomyces pombe; yeast

向作者/读者索取更多资源

Eukaryotic organisms maintain karyotypes with constant chromosome number, but polyploid cells that contain more than two sets of chromosomes can frequently be found. On the one hand, polyploidization is likely to provide some beneficial effects, as naturally occurring polyploid cells can be readily found. On the other hand, polyploidization profoundly affects cell physiology, which may be detrimental to cells. Additionally, polyploidy leads often to aneuploidy and diversification of genetic information; therefore, it has always been considered a prominent driving force in evolution. Recently tetraploid-derived aneuploidy was suggested as a possible mechanism for resistance to fungicides. Another prominent example of the effects of tetraploid-derived aneuploidy is cancer, in which up to one-third of tumours likely originate through tetraploid intermediates. Studying the cellular consequences of polyploidization in human cells is challenging. In contrast, polyploid and aneuploid cells can be easily generated and analysed in the budding yeast Saccharomyces cerevisiae as well as in other yeast species. This, together with the naturally occurring yeast polyploids and aneuploids, provides a valuable model to study the effects of abnormal chromosome numbers on cellular physiology. Thus, the yeast model may provide novel insights into the general mechanisms of genomic instability in eukaryotes and improve our understanding of the consequences of ploidy changes and their relevance for disease. Copyright (c) 2014 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据