4.2 Article

Compounds leached from quinoa seeds inhibit matrix metalloproteinase activity and intracellular reactive oxygen species

期刊

INTERNATIONAL JOURNAL OF COSMETIC SCIENCE
卷 37, 期 2, 页码 212-221

出版社

WILEY
DOI: 10.1111/ics.12185

关键词

ageing; cell culture; chemical analysis; oxidative damage; phytochemistry; phytoecdysteroid

资金

  1. National Center for Complementary and Alternative Medicine (NCCAM) [P50AT002776-01]
  2. Office of Dietary Supplements (ODS)
  3. New Jersey Agricultural Experiment Station
  4. Rutgers University: the Robert and Lillian White-Stevens Fellowship
  5. Rutgers University: Robert T. Rosen Memorial Award
  6. Rutgers University: Aresty Undergraduate Research Fellowship

向作者/读者索取更多资源

ObjectiveQuinoa (Chenopodium quinoa Willd.) is a seed crop rich in bioactive compounds including phytoecdysones (especially 20-hydroxyecdysone, 20HE), polyphenols, proteins and essential fatty acids. We previously reported a method to leach and concentrate quinoa bioactives into a complex phytochemical mixture termed quinoa leachate (QL). Here, we aimed to determine the effect of QL and its chemically distinct fractions on five biochemical endpoints relevant to skin care applications: (i) cell viability, (ii) matrix metalloproteinase (MMP) mRNA expression, (iii) MMP enzymatic activity, (iv) tyrosinase enzymatic activity and (v) intracellular reactive oxygen species (ROS) production. MethodsQuinoa leachate was fractionated and chemically characterized using column chromatography and liquid chromatography-mass spectrometry (LC-MS). Cell viability was determined using a MTT assay in four mammalian cell lines. MMP-1 mRNA expression was assessed in human dermal fibroblasts (HDF) via qRT-PCR. The enzymatic activity of MMP-9 and tyrosinase was measured using fluorometric and colorimetric in vitro assays, respectively. Lipopolysaccharide (LPS)-induced ROS production was determined in human dermal fibroblasts by fluorescence intensity of an oxidant-sensitive probe. ResultsQuinoa leachate was separated into three fractions: (i) carbohydrate-rich fraction (QL-C; 71.3% w/w of QL); (ii) phytoecdysone, polyphenol and protein-rich fraction (QL-P, 13.3% w/w of QL); (iii) oil-rich fraction (QL-O, 10.8% w/w of QL). QL did not reduce cell viability in any of the four cell lines tested. QL, QL-P and QL-O each significantly inhibited MMP-1 mRNA expression in HDF at a concentration of 5gmL(-1). QL and QL-P also significantly inhibited MMP-9 enzymatic activity, whereas QL-P demonstrated significant tyrosinase enzymatic inhibition. Furthermore, QL, QL-P, QL-O and 20HE significantly inhibited intracellular ROS production. ConclusionThis study is the first to demonstrate the MMP, tyrosinase and ROS inhibiting properties of multiple different phytochemical components derived from quinoa seeds. Our work indicates that quinoa phytochemicals may play a role in the treatment and prevention of skin ageing through a multiplicity of effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据