4.6 Article

Hydrostatic pressure and temperature dependence of wood moisture sorption isotherms

期刊

WOOD SCIENCE AND TECHNOLOGY
卷 48, 期 3, 页码 483-498

出版社

SPRINGER
DOI: 10.1007/s00226-014-0616-5

关键词

-

向作者/读者索取更多资源

By expressing wood moisture content data as a function of adsorption energy, an interesting scaling capability is obtained, wherefrom the general hydrostatic pressure and temperature dependence of wood moisture content is determined. The scaling law is fully consistent with the thermodynamics of swelling. It can be used to transform room condition sorption isotherms to other temperatures and hydrostatic pressures, provided that the wood matrix is not irreversibly modified. A special procedure is suggested for the case of an irreversibly changing wood matrix, as in thermal modification and thermo-hydro-mechanical treatments. Using the present scaling theory, several fundamental aspects of wood moisture sorption are explained, such as the absence of a significant quantity of strongly bound wood moisture, the internal stress generation by sorption hysteresis in the wood cell wall, and the reason for the reversible disappearance of the sigmoid shape of the sorption isotherm at higher temperature. The results of this research may be useful (a) for transformation of known sorption data to other conditions, notably where in situ moisture measurements are difficult to perform and (b) to quantify the effects of internal stresses in the ultrastructure of the cell wall on moisture content.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据