4.5 Review

Nanoparticles to mediate X-ray-induced photodynamic therapy and Cherenkov radiation photodynamic therapy

出版社

WILEY
DOI: 10.1002/wnan.1541

关键词

Cherenkov radiation; nanoparticles; photodynamic therapy; radiation therapy; scintillation; X-ray induced photodynamic therapy

资金

  1. National Science Foundation [NSF1552617]
  2. Congressionally Directed Medical Research Programs [CA140666]
  3. National Institutes of Health [R01NS093314, R01EB022596]
  4. CDMRP [CA140666, 793849] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Photodynamic therapy (PDT) has emerged as an attractive option for cancer treatment. However, conventional PDT is activated by light that has poor tissue penetration depths, limiting its applicability in the clinic. Recently the idea of using X-ray sources to activate PDT and overcome the shallow penetration issue has garnered significant interest. This can be achieved by external beam irradiation and using a nanoparticle scintillator as transducer. Alternatively, research on exploiting Cherenkov radiation from radioisotopes to activate PDT has also begun to flourish. In either approach, the most auspicious success is achieved using nanoparticles as either a scintillator or a photosensitizer to mediate energy transfer and radical production. Both X-ray induced PDT (X-PDT) and Cherenkov radiation PDT (CR-PDT) contain a significant radiation therapy (RT) component and are essentially PDT and RT combination. Unlike the conventional combination, however, in X-PDT and CR-PDT, one energy source simultaneously activates both processes, making the combination always in synchronism and the synergy potential maximized. While still in early stage of development, X-PDT and CR-PDT address important issues in the clinic and hold great potential in translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据