4.5 Review

Tracking stem cells using magnetic nanoparticles

出版社

WILEY
DOI: 10.1002/wnan.140

关键词

-

资金

  1. NIDA NIH HHS [R01 DA026299] Funding Source: Medline
  2. NINDS NIH HHS [R01 NS045062] Funding Source: Medline

向作者/读者索取更多资源

Stem cell therapies offer great promise for many diseases, especially those without current effective treatments. It is believed that noninvasive imaging techniques, which offer the ability to track the status of cells after transplantation, will expedite progress in this field and help to achieve maximized therapeutic effect. Today's biomedical imaging technology allows for real-time, noninvasive monitoring of grafted stem cells including their biodistribution, migration, survival, and differentiation, with magnetic resonance imaging (MRI) of nanoparticle-labeled cells being one of the most commonly used techniques. Among the advantages of MR cell tracking are its high spatial resolution, no exposure to ionizing radiation, and clinical applicability. In order to track cells by MRI, the cells need to be labeled with magnetic nanoparticles, for which many types exist. There are several cellular labeling techniques available, including simple incubation, use of transfection agents, magnetoelectroporation, and magnetosonoporation. In this overview article, we will review the use of different magnetic nanoparticles and discuss how these particles can be used to track the distribution of transplanted cells in different organ systems. Caveats and limitations inherent to the tracking of nanoparticle-labeled stem cells are also discussed. (C) 2011 John Wiley & Sons, Inc. WIREs Nanomed Nanobiotechnol 2011 3 343-355 DOI: 10.1002/wnan.140

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据