4.3 Article

Rates of anaerobic microbial metabolism in wetlands of divergent hydrology on a glacial landscape

期刊

WETLANDS
卷 28, 期 3, 页码 703-714

出版社

SPRINGER
DOI: 10.1672/06-126.1

关键词

anaerobic respiration; denitrification; freshwater wetlands; iron reduction; methanogenesis; sulfate reduction

资金

  1. National Science Foundation [DEB 0072980, DEB 9810220, DEB 9701714]

向作者/读者索取更多资源

Biogeochemical transformations in wetlands impact water quality, nutrient transport across landscapes, and greenhouse gas exchanges with the atmosphere. This study examined anaerobic microbial respiration and methanogenesis in surficial sediments of six wetlands lying on glacial terrain in southwest Michigan, USA. Three of the wetlands were mainly groundwater-fed and three were mainly precipitation-fed. Ambient rates of denitrification, sulfate reduction, iron reduction, methanogenesis, and acetate turnover were measured at each wetland. Ambient denitrification rates were not detectable in any wetland, but denitrifying enzyme activity, measured in two wetlands, indicated that the potential to remove nitrate was higher in a groundwater-fed wetland. Iron reduction was measurable mainly in precipitation-fed wetlands while sulfate reduction was only measurable in the groundwater-fed wetlands. Methanogenesis was measurable in all wetlands, with no differences between wetlands with contrasting water sources, indicating that methanogenesis is important regardless of water source. Acetate turnover rates, which reflect total anaerobic respiration and methanogenesis, were higher in the groundwater-fed wetlands and proportional to the sum of the individual carbon mineralization rates across all wetlands. Even though there was substantial variation in the process rates among these wetlands, the general patterns indicate that water source influences the biogeochemical function of wetlands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据