4.4 Article

Weed interference, pulse species, and plant density effects on rotational benefits

期刊

WEED SCIENCE
卷 56, 期 2, 页码 249-258

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1614/WS-07-118.1

关键词

model weed; nitrogen fixation; %Ndfa; pulse crop management; subsequent crop performance

向作者/读者索取更多资源

Pulse crop management can increase pulse yields and N fixation, but the effects of previous pulse crop management on subsequent crop performance is poorly understood. Field studies were conducted at three locations, in the Parkland region of Alberta, Canada, between 2004 and 2006. Tannin-free faba bean, narrowleaf lupin, and field pea were planted at 0.5, 1.0, 1.5, and 2.0 times the recommended pulse planting density (PPD), with or without barley as a model weed. Faba bean produced the highest seed yields in higher precipitation environments, whereas pea produced the highest seed yields in lower precipitation environments. Lupin seed yields were consistently low. In the absence of weed interference, faba bean, pea, and lupin N-fixation yields ranged from 70 to 223, 78 to 147, and 46 to 173 kg N ha(-1) respectively. On average, faba bean produced the highest N-fixation yield. The absence of weed interference and a high PPD increased pulse seed and N-fixation yields. Quality wheat crops were grown on pulse stubble without additional N fertilizer in some site-years. Management practices that increased N fixation resulted in only marginal subsequent wheat yield increases. Subsequent wheat seed yield was primarily influenced by pulse species. Pea stubble produced 11% higher wheat yields than lupin stubble but only 2% higher wheat yields than faba bean stubble. Consistently high wheat yields on pea stubble may be attributed to synchronized N release from decomposing pea residues with subsequent crop N demand and superior non-N rotational benefits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据