4.7 Article

Numerical simulation of the third body in fretting problems

期刊

WEAR
卷 270, 期 11-12, 页码 876-887

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.wear.2011.02.016

关键词

Finite elements; Third body; Fretting; Dang Van's fatigue model; Wear

向作者/读者索取更多资源

This study is devoted to the computation of realistic stress and strain fields at a local scale in fretting. Models are proposed to improve surface and volume modelling, by taking into account the heterogeneity of stress fields due to the irregular interface. This gives a new view toward damage mechanisms. The surface heterogeneity which is considered here, results from the third body trapped in the contact zone. This third body is known to drastically influence the contact conditions. The competition between wear and crack initiation is investigated with respect to local stress fields. The first model is used to study the evolutions of particles and the contact stress according to the loading conditions. Then, Dang Van's multiaxial fatigue model is used to predict crack initiation during the fretting test. This criterion may highlight the presence of microcracking everywhere in the contact zone. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据