4.7 Article

A phenomenological model for erosion of material in a horizontal slurry pipeline flow

期刊

WEAR
卷 269, 期 3-4, 页码 190-196

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.wear.2010.03.002

关键词

Erosion models; Particle impact; Slurry pipeline flow

向作者/读者索取更多资源

Based on the turbulent flow theory and a single particle erosion model developed by Huang et al. (2008) [9], a comprehensive phenomenological model for erosion of material in slurry pipeline flow is developed. This model captures the effects of particle shape, particle size, slurry mean velocity, pipe diameter, fluid viscosity and the properties of target material. The model shows that the erosion rate has a power-law relation with slurry mean velocity, particle size, pipe diameter, fluid viscosity and solid concentration. The erosion rate depends strongly on the slurry mean velocity and weakly on pipe diameter and fluid viscosity. The exponent of slurry mean velocity varies in a range of 2-3.575, which is consistent with most of the experiments. The model also elucidates that the effect of particle size on erosion rate depends on the particle shape, flow condition and erosion location on the periphery of a pipe. To test the model developed, a simplified version was used to compare with the experiments conducted by Karabelas. Both of them are in good agreement. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据