4.7 Article

Wear behavior in turning high hardness alloy steel by CBN tool

期刊

WEAR
卷 264, 期 7-8, 页码 679-684

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.wear.2007.06.006

关键词

CBN; tool life; tool wear mechanism; high hardness alloy steel

向作者/读者索取更多资源

Tool wear mechanisms in turning of high hardness alloy steels by CBN tools under various speeds are investigated by experimental studies. In low speed cutting, the binder of the hard particles of the cutting tool is found to be removed from the substrate due to a high cutting force, resulting from low cutting temperature, and abrasion dominates tool wear. When the cutting speed is increased, a protective layer resulting from the diffusion of the bond material of the cutting tool starts to form on the chip-tool interface. This layer works as a diffusion barrier. Hence, tool wear rate is reduced and the usable life of the CBN tool is prolonged. However, when the cutting speed is further increased, cutting temperature becomes the dominant factor instead of the cutting force. The high cutting speed causes inhomogeneous shear strain, and a transition from continuous chip to saw-tooth chip occurs. The friction force is found to increase because of the very irregular chip-tool contact. This would remove the protective layer. In addition, the bond between tool particles is weakened due to serious diffusion between the work material and the cutting tool under high cutting temperature. Subsequently, hard particles are detached, and tool life is reduced. Hence, it is concluded that there exists an optimal cutting speed of CBN tool in turning of high hardness alloy steels. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据