4.7 Article

An information theoretic alternative to model a natural system using observational information alone

期刊

WATER RESOURCES RESEARCH
卷 50, 期 1, 页码 650-660

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2013WR013845

关键词

partial mutual information; partial mutual information; mutual information; mutual information; information theory; information theory

资金

  1. Australian Research Council

向作者/读者索取更多资源

How to define a system? This is a problem faced routinely in science and engineering, with solutions developed from our understanding of the processes inherent, to assessing the underlying structure based on observational evidence alone. In general, system specification involves identifying a few meaningful predictors (from a large enough set that is plausibly related to the response) and formulating a relation between them and the system response being modeled. For systems where physical relationships are less apparent, and sufficient observational records exist, a range of statistical alternatives have been investigated as a possible way of specifying the underlying form. Here we introduce partial information (PI) as a new means for specifying the system, its key advantage being the relative lack of major assumptions about the processes being modeled in order to characterize the complete system. In addition to PI which offers a means of identifying the system predictors of interest, we also introduce the concept of partial weights (PWs) which uses the identified predictors to formulate a predictive model that acknowledges the relative contributions, predictor variables make to the prediction of the response. We assess the utility of the PI-PW framework using synthetically generated data sets from known linear, nonlinear, and high-dimensional dynamic yet chaotic systems and demonstrate the efficacy of the procedure in ascertaining the underlying true system with varying extents of observational evidence available. We highlight how this framework can be invaluable in formulating prediction models for natural systems which are modeled using empirical or semiempirical alternatives and discuss current limitations that still need to be overcome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据