4.7 Article

Balancing practicality and hydrologic realism: A parsimonious approach for simulating rapid groundwater recharge via unsaturated-zone preferential flow

期刊

WATER RESOURCES RESEARCH
卷 49, 期 3, 页码 1458-1465

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/wrcr.20141

关键词

-

资金

  1. USGS INL Project Office

向作者/读者索取更多资源

The impact of preferential flow on recharge and contaminant transport poses a considerable challenge to water-resources management. Typical hydrologic models require extensive site characterization, but can underestimate fluxes when preferential flow is significant. A recently developed source-responsive model incorporates film-flow theory with conservation of mass to estimate unsaturated-zone preferential fluxes with readily available data. The term source-responsive describes the sensitivity of preferential flow in response to water availability at the source of input. We present the first rigorous tests of a parsimonious formulation for simulating water table fluctuations using two case studies, both in arid regions with thick unsaturated zones of fractured volcanic rock. Diffuse flow theory cannot adequately capture the observed water table responses at both sites; the source-responsive model is a viable alternative. We treat the active area fraction of preferential flow paths as a scaled function of water inputs at the land surface then calibrate the macropore density to fit observed water table rises. Unlike previous applications, we allow the characteristic film-flow velocity to vary, reflecting the lag time between source and deep water table responses. Analysis of model performance and parameter sensitivity for the two case studies underscores the importance of identifying thresholds for initiation of film flow in unsaturated rocks, and suggests that this parsimonious approach is potentially of great practical value. Citation: Mirus, B. B., and J. R. Nimmo (2013), Balancing practicality and hydrologic realism: A parsimonious approach for simulating rapid groundwater recharge via unsaturated-zone preferential flow, Water Resour. Res., 49, 1458-1465, doi: 10.1002/wrcr.20141.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据