4.7 Article

Heat transport dynamics at a sandy intertidal zone

期刊

WATER RESOURCES RESEARCH
卷 49, 期 6, 页码 3770-3786

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/wrcr.20325

关键词

intertidal zone; submarine groundwater discharge; subterranean estuary; heat transport; permeable sediment; coral reef lagoon

资金

  1. Australian Research Council [ARC-LP100200732]
  2. AUSAID
  3. Geological Society of America
  4. Geology Foundation at the University of Texas at Austin

向作者/读者索取更多资源

Intertidal zones are spatially complex and temporally dynamic environments. Coastal groundwater discharge, including submarine groundwater discharge, may provide stabilizing conditions for intertidal zone permeable sediments. In this study, we integrated detailed time series temperature observations, porewater pressure measurements, and two-dimensional electrical resistivity tomography profiles to understand the coupled hydraulic-thermal regime of a tropical sandy intertidal zone in a fringing coral reef lagoon (Rarotonga, Cook Islands). We found three heating patterns across the 15 m study transect over tidal and diel periods: (1) a highly variable thermal regime dominated by swash infiltration and changes in saturation state in the upper foreshore with net heat import into the sediment, (2) a groundwater-supported underground stable, cool region just seaward of the intertidal slope break also importing heat into the subsurface, and (3) a zone of seawater recirculation that sustained consistently warm subsurface temperatures that exported heat across the sediment-water interface. Simple calculations suggested thermal conduction as the main heat transport mechanism for the shallow intertidal sediment, but deeper and/or multidimensional groundwater flow was required to explain temperature patterns beyond 20 cm depth. Temperature differences between the distinct hydrodynamic zones of the foreshore site resulted in significant thermal gradients that persisted beyond tidal and diel periods. The thermal buffering of intertidal zones by coastal groundwater systems, both at surface seeps and in the shallow subsurface, can be responsible for thermal refugia for some coastal organisms and hotspots for biogeochemical reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据