4.7 Article

Dynamic alterations in wellbore cement integrity due to geochemical reactions in CO2-rich environments

期刊

WATER RESOURCES RESEARCH
卷 49, 期 7, 页码 4465-4475

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/wrcr.20340

关键词

dynamic flow; wellbore integrity; cement degradation; CO2 sequestration

资金

  1. RES as part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA) [1000026]
  2. Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through URS Energy & Construction, Inc.

向作者/读者索取更多资源

The interaction between wellbore cement and CO2 has the potential to alter cement properties and form preferential leakage pathways during geological carbon sequestration. This work investigates changes in wellbore cement integrity during continuous flooding of CO2-saturated brine. We created composite cement-sandstone core samples with a continuous gap in the cement zone in order to represent defects such as fractures and voids in wellbore cement. Volumetric and structural changes in the cement zone were monitored and quantified using X-ray Micro-Computed Tomography imaging. During an 8 day dynamic flow-through period, the fracture/void aperture increased significantly, whereas the host sandstone remained unaltered. The void volume increased at a faster rate in the early stage of the flow-through period than it did toward the end of the period. Compared to the apertures close to the core outlet, those located near the core inlet experienced more severe cement degradation, accompanied by a decrease in specific surface area, constituting evidence of a smoothing effect. Contrary to previous observations of the self-healing behavior of cement fractures, the in situ permeability on a parallel experiment increased by a factor of 8 after 10 days of flooding. Findings from this work will provide valuable insights applicable to the development of predictive models and for risk assessment under conditions relevant to CO2 sequestration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据