4.7 Article

Simulating streamflow and dissolved organic matter export from a forested watershed

期刊

WATER RESOURCES RESEARCH
卷 48, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011WR011423

关键词

-

资金

  1. Schlumberger Foundation Faculty
  2. Yale Institute for Biospheric Studies
  3. Department of Energy [DE-F602-08ER6463]
  4. National Science Foundation [EAR1014478]
  5. Division Of Earth Sciences
  6. Directorate For Geosciences [1014478] Funding Source: National Science Foundation

向作者/读者索取更多资源

Stream water concentrations of dissolved organic matter (DOM) exhibit large temporal variations during precipitation on forested, headwater catchments. We present a modeling framework appropriate for describing streamflow and event-driven export of DOM from small, forested watersheds. Our model links parametrically simple formulations for rainfall-runoff generation and soil water carbon dynamics. The rainfall-runoff formulation is developed by modifying the catchment model of Kirchner (2009) to account for hysteresis in the relationship between stream discharge and catchment water storage. Time series computations of catchment water storage are used by the soil carbon model to approximate the effects of leaching, adsorption, and mineralization on soil water DOM concentrations and the export of DOM from the terrestrial reservoir to the stream. Our findings show that this model is capable of reproducing hourly variations of stream discharge (ranging from 0.01 to 0.38 mm h(-1)) and stream water DOM concentrations (ranging from 1.8 to 14 mg C L-1) measured in a forested headwater stream in north central Massachusetts. Our analysis highlights the strong linkage between soil carbon dynamics and hydrological processes that govern catchment water storage and flow paths connecting the terrestrial system to the stream.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据