4.7 Article

Urban water demand modeling: Review of concepts, methods, and organizing principles

期刊

WATER RESOURCES RESEARCH
卷 47, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2010WR009624

关键词

-

资金

  1. Climate Program Office of the U.S. Department of Commerce, NOAA [NA09OAR4310140]
  2. National Science Foundation [1015610]
  3. James F. and Marion L. Miller Foundation
  4. Direct For Biological Sciences
  5. Division Of Environmental Biology [1010495] Funding Source: National Science Foundation
  6. Office Of The Director
  7. Office Of Internatl Science &Engineering [1015610] Funding Source: National Science Foundation

向作者/读者索取更多资源

In this paper, we use a theoretical framework of coupled human and natural systems to review the methodological advances in urban water demand modeling over the past 3 decades. The goal of this review is to quantify the capacity of increasingly complex modeling techniques to account for complex human and natural processes, uncertainty, and resilience across spatial and temporal scales. This review begins with coupled human and natural systems theory and situates urban water demand within this framework. The second section reviews urban water demand literature and summarizes methodological advances in relation to four central themes: (1) interactions within and across multiple spatial and temporal scales, (2) acknowledgment and quantification of uncertainty, (3) identification of thresholds, nonlinear system response, and the consequences for resilience, and (4) the transition from simple statistical modeling to fully integrated dynamic modeling. This review will show that increasingly effective models have resulted from technological advances in spatial science and innovations in statistical methods. These models provide unbiased, accurate estimates of the determinants of urban water demand at increasingly fine spatial and temporal resolution. Dynamic models capable of incorporating alternative future scenarios and local stochastic analysis are leading a trend away from deterministic prediction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据