4.7 Article

Vegetation controls on variably saturated processes between surface water and groundwater and their impact on the state of connection

期刊

WATER RESOURCES RESEARCH
卷 47, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011WR010544

关键词

-

资金

  1. National Water Commission
  2. Swiss National Foundation, Ambizione [PZ00P2_126415]

向作者/读者索取更多资源

The vadose zone plays an important role in surface water-groundwater interaction and exerts strong influences on biogeochemical, ecological, and hyporheic processes. It is also the presence of an unsaturated zone that controls the state of connection between surface water and groundwater. Despite recent advances on how hydrogeological variables affect surface water-groundwater interactions, there is limited understanding of the hydroclimatic effects of precipitation and evapotranspiration. More specifically, there is a need for a physically based understanding on the changes that may occur in response to changes in vegetation. While it may seem qualitatively obvious that the presence of vegetation can cause an unsaturated zone to develop underneath a riverbed and alter the state of connection, it has so far not been demonstrated quantitatively. Also, the influence of variables such as root extinction depth, topography, and the influence of land clearance has so far not been explored. In this study, fully coupled, physically based 2-D transient homogeneous models were used to simulate the impact of land clearance and revegetation on the state of connection of a perennial river system. The simulations showed that the presence of vegetation can create an unsaturated zone between a river and an aquifer and affect the state of connection and that the removal of deep-rooted vegetation from a catchment may have a significant impact on the state of connection as well as the condition of the water resource.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据