4.7 Review

Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan

期刊

WATER RESOURCES RESEARCH
卷 45, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2007WR006715

关键词

-

资金

  1. National Science Foundation (NSF) [EAR0229713, EAR-0229717, IIS-0431069, IIS-0431079, EAR-0450336, EAR-0450388]
  2. Strategic Environmental Research and Development Program (SERDP) [ER-1365]
  3. Natural Sciences and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

Two large-scale cross-hole pumping tests were conducted at depths of 191-226 m and 662-706 m in deep boreholes at the Mizunami Underground Research Laboratory (MIU) construction site in central Japan. During these two tests, induced groundwater responses were monitored at many observation intervals at various depths in different boreholes at the site. We analyze the two cross-hole pumping tests using transient hydraulic tomography (THT) based on an efficient sequential successive linear estimator to compute the hydraulic conductivity (K) and specific storage (S-s) tomograms, as well as their uncertainties in three dimensions. The equivalent K and S-s estimates obtained using asymptotic analysis treating the medium to be homogeneous served as the mean parameter estimates for the 3-D stochastic inverse modeling effort. Results show several, distinct, high K and low S-s zones that are continuous over hundreds of meters, which appear to delineate fault zones and their connectivity. The THT analysis of the tests also identified a low K zone which corresponds with a known fault zone trending NNW and has been found to compartmentalize groundwater flow at the site. These results corroborate well with observed water level records, available fault information, and coseismic groundwater level responses during several large earthquakes. The successful application of THT to cross-hole pumping tests conducted in fractured granite at this site suggests that THT is a promising approach to delineate large-scale K and S-s heterogeneities, fracture connectivity, and to quantify uncertainty of the estimated fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据