4.7 Article

Revisiting rainfall clustering and intermittency across different climatic regimes

期刊

WATER RESOURCES RESEARCH
卷 45, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2008WR007352

关键词

-

资金

  1. National Science Foundation [NSF-EAR 0628342, NSF-EAR 0635787, NSF-ATM-0724088]
  2. Bi-national Agricultural Research and Development (BARD) [IS-3861-96]

向作者/读者索取更多资源

One of the vexing questions in rainfall research is the role of intermittency and its nonuniversal signature in anomalous scaling functions. Whether this lack of universal behavior is due to the bursting patterns in rainfall intensity or the alternation between long dry periods and highly clustered wet phases (or both) remains an open issue. To progress on a narrower scope of this problem, the effects of intermittency originating from rainfall occurrence are first separated from rainfall intermittency induced by intensity variability. Across five climatic regimes considered here, it was shown that the rainfall occurrence process (OP) exhibits (1) a near-constant spectral slope, (2) a near-constant clustering exponent, and (3) a probability density function of dry phases displaying a power law behavior with an exponent beta approximate to 1.5, consistent with other studies for timescales commensurate with frontal and storm systems. Also for the OP, the scaling exponents of the normalized higher order structure functions reveal an extensive monofractal scaling at all five climatic regimes. When taken together, these intersite results are suggestive that rainfall intensity modulations are the main cause of the nonuniversal anomalous scaling and not the clustering properties associated with the support. The nature of these modulations is markedly different when comparing rainfall to a familiar and often interrelated process such as scalar turbulence. In the case of turbulence, amplitude variability of scalar dissipation rates appear to mitigate the intermittency effects connected with anomalous scaling, while for rainfall series, intensity fluctuations seem to amplify them.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据