4.7 Article

An Automated Tool for Smart Water Network Partitioning

期刊

WATER RESOURCES MANAGEMENT
卷 27, 期 13, 页码 4493-4508

出版社

SPRINGER
DOI: 10.1007/s11269-013-0421-1

关键词

Water network partitioning; Graph theory; Smart water network; Sectorization; Water leakage

向作者/读者索取更多资源

Water Network Partitioning (WNP) represents the application of the divide and conquer paradigm to a Smart WAter Network (SWAN) that allows the improved application of techniques for water balance and pressure control. Indeed, these techniques can be applied with greater effectiveness by defining smaller permanent network parts, called District Meter Areas (DMAs), created by the insertion of gate valves and flow meters. The traditional criteria for the design of network DMAs are based on empirical suggestions (number of properties, length of pipes, etc.) and on approaches such as 'trial and error', even if used together with hydraulic simulation software. Nevertheless, these indications and procedures are very difficult to apply to large water supply systems because the insertion of gate valves modifies the original network layout and may considerably worsen the hydraulic performance of the water network. The proposed tool, based on some graph partitioning techniques, commonly applied in distributed computing, and on an original optimisation technique, allows the automatic design of a WNP comparing different possible layouts that are compliant with hydraulic performance. In this paper, the methodology was tested on a real case study using some performance indices to compare different WNPs. The proposed tool was developed in Phyton and integrates graph partitioning, hydraulic simulation techniques and a heuristic optimisation criterion. It allows the definition of DMAs with resulting performance indices that are very similar to the original network layout.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据